Solve Trig Equations
$$\sin ( \pi +x) + \sin ( \pi +x) =1 $$
$$\sin ( \pi +x) + \sin ( \pi +x) =1 $$
$$\frac{\sin \theta}{1+\cos \theta}+ \frac {1+\cos \theta} {\sin \theta} =2 \csc \theta$$
$$2\cos x-\sqrt{3}=0$$
$$(3x-2)^2 = 121$$
$$degree^\circ=\frac{\pi}{180}$$
$$radian\pi = \frac{180}{\pi}^\circ$$
$$\frac{\sec\theta \sin\theta}{\tan\theta+\cot\theta} = \sin^2\theta$$
$$\frac {4p^2+13p-12}{p^3-p^2-2p}$$
$$\frac {5x-34}{x^2-x-12}$$