Verify Trigonometric Identity
$$\frac{\sec\theta \sin\theta}{\tan\theta+\cot\theta} = \sin^2\theta$$
$$\frac{\sec\theta \sin\theta}{\tan\theta+\cot\theta} = \sin^2\theta$$
$$\frac {4p^2+13p-12}{p^3-p^2-2p}$$
$$v^2+6v-59=0$$
$$\frac {-7x+13}{x^2-5x-14}$$
$$\frac {5x-34}{x^2-x-12}$$
$$\int t^4 \sqrt[3]{3-5t^5}dt $$